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virtrerential cquatnons

6. SOLUTIONS OF DIFFERENTIAL EQUATIONS

Finding the dependent variable from the differential equation is called solving or integrating it. The solution or the
integral of a differential equation is, therefore, a relation between the dependent and independent variables (free
from derivatives) such that it satisfies the given differential equation.

Note: The solution of the differential equation is also called its primitive.
There can be two types of solution to a differential equation:
(a) General solution (or complete integral or complete primitive)

A relation in x and y satisfying a given differential equation and involving exactly the same number of arbitrary
constants as the order of the differential equation.

(b) Particular solution

A solution obtained by assigning values to one or more than one arbitrary constant of general solution

dy
lllustration 8: The general solution of x* 5~ = 2'is
Sol: First separate out x term and y term and then integrate it, we shall obtain result.
dy 2

ax =dy= x%dx Now integrate it. We gety = - % +C

lllustration 9: Verify that the function x + y = tan™'y is a solution of the differential equation y?y' + y*+ 1 =10

Sol: By differentiating the equation x + y = tan™'y with respect to x we can prove the given equation.

We have, x + y = tan”y .. (i)
Differentiating (i), w.r.t. x we get
2
1+ ﬂg 1 d_y = 1+ d_y 1+y—_1 =0
dx 1+ yz dx dx 1+ y2

d
= (1+y2)+y"-£20: yy +y?+1=0

lllustration 10: Show that the functiony = Ax + [Zx +2y3—y] is a solution of the differential equation
X
dy  dy

XZF'FXE -y= O

Sol: Differentiating y = Ax + — twice with respect to x and eliminating the constant term, we can prove the given
. X
equation.

We have, y = Ax + j—y = xy=Ax*+B - (i)
X
Differentiation (i) w.r.t. 'x'. we get = x j—y + 1y = 2Ax .. (i)
X

Again differentiating (ii) w.rt.,, 'x’, we get
dy
d’  dy dy dy dy Xax Y _ ,dy  dy
—L L L =2A 2 X _Ox —Z+x—2L-y=0
= de2+dx+dx = de2+ I " = X dx2+xdx y

Which is same as the given differential equation. Therefore y = Ax + g—y is a solution for the given differential
X

equation.
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lllustration 11: If y.v/x’ +1=Iog[\1‘x2 + } show that (2 + 1) d +xy+1=0

Sol: Similar to the problem above, by differentiating y./x? +1= Iog[«.fx2 +1 —x] one time with respect to x, we
will prove the given equation.

We have, y. V2 +1 = Iog[x}x2 +1] (D)

Differentiating (i), we get

[2
[2.9y,1 2 e (1/2)(2"/ X +1j_ J)Tdy X x-Vx% +1 _
dx 2\/x2+1 X +1-x \/x +1 \/x2+1[\/x2+1—x}

ox—Ux 41 dy

dy dy
(+1) == +xy= ———; (2 + 1) == +xy=-1; +1=—= +xy+1=0
dx "x2+1—x dx dx

lllustration 12: Show that y = acos(logx) + bsin(logx) is a solution of the differential equation:

oS Y

dz d+y0

Sol: As the given equation has two arbitrary constants, hence differentiating it two times we can prove it.

We have, y = acos(logx) + bsin(logx) - (i)
Differentiating (i) w.r.t 'x'. we get ; d_y =— asin(logx) + beos(logx)
dx X X
dy . "
xd— = —asin(logx)+bcos(logx) .. (ii)
X

Again differentiating with respect to ‘x’, we get

d2y+dy acos(logx) bsin(logx)
X— 4+ — = .

dx? dx X X
d? d . d’y d d’y d
2 0%y y y y y
= —Z +x— = -Jacos(logx) + bsin(logx = —ZL4x—L == :>—+—+ 0
X de de [ ( g ) ( g )] dx2 de y dx de y=

Which is same as the given differential equation

Hence, y = acos(logx) + bsin(logx) is a solution of the given differential equation.

7. METHODS OF SOLVING FIRST ORDER FIRST DEGREE DIFFERENTIAL
EQUATION

7.1 Equation of the Form dy/dx = f(x)

To solve this type of differential equations, we integrate both sides to obtain the general solution as discussed
below

%: f(x) = dy = f(x)dx
Integrating both sides we obtain fdy _[f dx+c » y= If(x)dx+ C
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d
lllustration 13: The general solution of the differential equation d_z =X+ x2— 2 is
X

Sol: General solution of any differential equation is obtained by integrating it hence for given equation we have to
integrate it one time to obtain its general equation.

We have: d_y= x5+ x2— z
dx X

. 2 1 X x
I = Six?-2 d =[x 2dx-2[= =2 .33 7
ntegrating, y J'(x +X x] X +C _[x dx+Ix dx _[xdx+c:>y g3 og|x| + ¢

Which is the required general solution.

2

lllustration 14: The solution of the differential equation coszxj—g =1is
X

Sol: By integrating it two times we will get the result.

2 2
cc:szxd—y =1 > L secx
dx? dx?
dy

On integrating, we get P = tanx + ¢,
X

Integrating again, we get y = log(secx) + ¢,x + ¢,

7.2 Equation of the form dy/dx = f(x) g(y)
To solve this type of differential equation we integrate both sides to obtain the general solution as discussed below

d_y —
dx
Integrating both sides, we get j (gly) ‘dy = _[f(x)dx

f(x)gly) = gly)*dy = f(x)dx

lllustration 15: The solution of the differential equation log(dy/dx) = ax + by is

. . . d . . .
Sol: We can also write the given equation as d_y = e™* After that by separating the x and y terms and integrating
X

both sides we can get the general equation.
1

B _ enrty o L) 2PN edvdy = e> dx o Lty JLea,
dx dx b a

d
lllustration 16: The solution of the differential equation _d% =e**Y + x%Vis

Sol: Here first we have to separate the x and y terms and then by integrating them we can solve the problem above.

. .. d
The given equation is d_y = e + x%e¥
X

= g_y = exe¥ + x%¥ = evdy = (e* + x3dx, Integrating, je‘ydy = I(e" + xz)dx +c
X
ey, x 1 .. 13 1 X
= —+e" +—+cC o> —=e+x+ce+ —+— =C
-1 3 e 3 e 3
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7.3 Equation of the Form dy/dx = f (ax+by+c)

To sclve this type of differential equation, we put ax + by + ¢ = vand 3—)/ . %(3—)/—0]
X X

dy

"a.].b_f(v)=dx

So solution is by integrating Ii—:‘/() = Idx
a+bf(v

. dy
llustration 17: (x + y)* 5, = a

Oy _ dt

Sol: Here we can't separate the x and y terms, therefore put x + y = t hence i d
X X

separate the terms and by integrating we will get the required result.

—1. Now we can easily

dt 2 2,42 2
Letx+y=t:>t2[a_1] —a2: dtza_+1 _a+t :‘.[ tdt

r T =X+cC
dx t2 t2

t2 +a°

d

Y X+
= t—atan“d_x=x+c:> y—atanl—y=

C

Illustration 18: dx _ x+y-1

dx Jx+y+1
Sol: Put x + y +1 = 2 and then solve similar to the above illustration.

letx+y+1 =1

2 2 2
L (pdt q) -2 L 2dt_et-2 I 20 e
t dx t (t=1)(t+2)
= 2_[ 1+;— 4 dt=x+c = 2t+2|n|t_1|—8m|t+2|5x+c
3(t-1) 3(t+2) 3 3

2l 1-1 | 142
o 2fxryri+ n|,/x+3y+ |_8n|,/x+3y+ + |=x+c
lllustration 19: -j—y = cos(10x + 8y). Find curve passing through origin in the form y = f(x) satisfying differential

X

equations given

Sol: Here first put 10x + 8y = t and then taking integration on both sides we will get the required result.
Let 10x + 8y =t

= 10+8d—y=ﬂ = d—y—10=8cost = J‘Lj‘dx=x+c
dx dx dx 8cost+10
dp 1+p?dy dt 2dp
= 2 _———_— _—

P tant/ dx 2(1) dx = dx 1+ pz

2dp
.'.I 1+ p2 3 _ J' de _ dp = yic

8 1-p? Ip? +18 p’+9
1+p?

= tan}(P/3)=x+c = tan‘l[M]zywc = 3tan(x+c) = tan(10x + 84)
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7.4 Parametric Form

Some differential equations can be solved using parametric forms.
Case I

X =rcosf y = rsind

Squaring and adding x? + y* = 1*

tand = Ie’ydy=_[(e"+x2)dx+c

xdx + ydy = rdr
-y 3
sec’0 do = e—l =e +X?+c = xdy — ydx = x%sec?d dO x = rcosf; xdy — ydx = r’d@

Case |l
If x =rsecd, y=rtand
X2 — yz =
X 1 3 '
—=e"+=x"+C =sinb
e’ 3
= xdx-ydy = rdr; xdy — ydx = cos x2d@ = xdy-ydx = r’secfdd

lllustration 20: Solve xdx + ydy = x(xdy — ydx)

- (ii)
.. (i)

- (i)

Sol: By substituting x = r cosd and y = r sin the given equation reduces to rdr = rcos0(r’d®). Hence by separating

and integrating both sides we will get the result.
Let x = rcosB, y = rsind
Hence the given equation becomes rdr = rcos0(r2do)

dr 1 1
—=Icosed9 = —==sin0+c = 3
2 r Jx +y \/ +y
dy
X+y—=>- 22
lllustration 21: Solve dx _ 1 Zx 3
dx
Sol: Similar to the problem above, by substituting x = r cos® and y = r sinf the given equation reduces to
rdr  y1-r? ‘ , . ,
73 = Hence by integrating both sides we will get the result.
r
X+ dy
ydx _ 1-x —y2 xdx+ydy y
xd—y—y x2+y2 Xdy ydx X +y2
dx
Let x =rcosh, y = rsind
2
rzd_rz ol = I dr =0+c = sin'r=0+c
r-do r 1-r?
= sin™?t \/x2+y2 =5in’1%+c
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xdx+ydy  ydx-—xdy
\/xz +y? x

Sol: Similar to the above illustration.

llustration 22:

Let x =rcosb, y = rsind

_rdr _ \/;

r’do  rcoso
= log(secO + tanf) +logr=c = x*+y? +y(\/x2 +y2)+Cx =0

=

= Isec9d9+j$=0

7.5 Homogeneous Differential Equations

A differential equation in x and y is said to be homogeneous if it can be y = f{x)
put in the form dy = f(x,y) where f(x, y) and g{x, y) are both homogeneous g P(xy)
dX g(x’y) 1 4 4

function of the same degree in x and y.

. . _dy f(xy)
To sclve the homogeneous differential equation e ﬁ
g(x.y
' dy dy
bstitutey = d —_—= —
substitute y = vx and so i v+xdx
Thus differential reduces to the form v + x dy =fv)=> o = dv X
dx f(v)-v
Therefore, solution is Id—y =j' dv +c Figure 24.1
x  f(v)-v

lllustration 23: Find the curve passing through (1, 0) such that the area bounded by the curve, x-axis and 2
ordinates, one of which is constant and other is variable, is equal to the ratio of the cube of variable ordinate to
variable abscissa.

3

X
Sol: By differentiating Iydx = y—, we will get the differential equaticn.
X
C
X 3 20 3 2,2
A= jyde_ oy= XYV gy o XY
. X X2 dx  3xy

(On differentiating the first integral equation w.r.t x)

Puty=v><'v+x$=lJrv2 = _[ 2¢
' dx 3v 1-2v2

dv=jldx = —%Iog‘l—2v2|=logx+logc = -2y =
X

Given this curve passes through (1, 0). So, ¢=1 Hence the equation of curve is (x> — 2y?)? = cx?

lllustration 24: The solution of differential equation Sy _ Y ttand is

dx x X

Sol: Here by putting y = xv and then integrating both sides we can solve the problem.
dy dv

Puty=xw=> —“=v+x—
y dx dx

. . dv dv
Hence the given equation becomes xd— +V=V+tanv=D xd— =tanv
X X

) sin| £

dv  dx . sinv X . (y
=— = logsinv = logx + logc = =Cc> =C=>cx = sin| =
tanv X X X X
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2 2
—2xy —
lllustration 25: Solve d_y = y_xy_x?

givenyatx = 1is -1
dx  y?42xy-x

Sol: Similar to the problem above, by putting y = vx, we can solve it and then by applying the given condition we
will get the value of c.

Lety = vx
dv  [vi-2v-1 dv (VG +vZ+v+1)
- V+HX— = - e B T ——
dx vii2v-1 dx vZ+2v-1

2v(v+1) - (v2 +1) dv = ¢ - logx

= I v42v-1 dv =c-logx = I

(v+1)(v?+1) (v+1)(v? +1)
241 2-1
— log(v—-i-)x_ =|ogc = (V_kzcsz-'-yz:c
v+l (v+1) y+Xx

= k(x¥+y)=x+y
Given atx = 1,y =—1= 2k = 0. Hence the required equationisx +y =0

2
lllustration 26: Solve y [g—y) + 2x j—y -y=0givenyatx=1is \/g
X X
dy _ —2x¢\f4x2 +4y?

2 —
—bVb” ~ 43¢ Yancefrom given equation —%
2a dx 2y
so by putting y = vx and integrating both side, we will get the result.

Sol: As we know, when ax? +bx +¢ = 0 then x =

Giveny[%] + 2X %—yzo

dy _ —2xi\}4x2+4y2 - dy _ —x:t\fx2+y2

dx 2y dx y
Let y=wx
dv +yv?+1-1 dv Hv24+1-1-v?
o X—=———"—""—-V 3 X—=
dx v dx \
vdv vdv
= I =logx+C = = logx + C
Vv +1-(1+v?) J-i\fv2+1(¢\/v2+1+1)
= —In(; v2+1+1) = logx + C = x(; v2+1+1) =c
. dy 7X-3Y
Givenatx=1,y=v dx - 33X+ 7Y = +\/_

= FJy?+x2 +x=FV6+1

This is the required equation.

Note: The obtained solution has 4 equations.
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7.6 Differential Equations Reducible to Homogenous Form

dv _ax+ b,y + c1

a, b
A differential equation of the form — where -1 = —L can be reduced to homogeneous form by

dx  a,x+b,y+c’ 6, b,
adopting the following procedure
Putx=X+h,y= Y+ksothatdy Y
dx dx

X Y h k
The equation then transforms to dy _aX+b,V+(ah+bk+q)
dX a,X+b,Y+(ah+bk+c,)

Now choose h and k such that a,h + bk + ¢, = 0 and a,h + b,k + ¢, = 0. Then for these values of h and k the
equation becomes

d_y _aX+b,Y
dx a,X+b,Y
This is a homogeneous equation which can be solved by putting Y = vX and then Y and X should be replaced by
y—kandx-h.

. d ax+by+c a_ b . . .
Special case: If _yz—y and —=— = m say, i.e. when coefficient of x and y in numerator and
dx a'x+b'y+c a b
denominator are proportional, then the above equation cannot be solved by the method discussed before because
the values of h and k given by the equation will be indeterminate. In order to solve such equations, we proceed as

explained in the following example.

dy _3x-by+7

Illustration 27: Solve
dx x-2y+4

Sol: Here the coefficient of x and y in the numerator and denominator are proportional hence by taking 3 common
from 3x — 6y and putting x — 2y = v and after that by integrating we will get the result.

_3(x- 2..+7
dx  x- 2y+4 x—-2y+4 dx T dx

Now differential equations reduces to 1- j—v = 2(3" +7J
X

v+4

dv v+2 2
a——S[\H_‘J = I(1+m]dv——5fdx

= v+2loglv+2‘=—5x+c = 3x—y+|og‘x—2y+2|=

lllustration 28: Solution of differential equation (3y —7x + 7)dx + (7y—3x + 3)dy = 0 is

Sol: By substituting x = X + h, y = Y + k where (h, k) will satisfy the equation 3y —7x + 7=0and 7y - 3x + 3 =0 we

can reduce the equation and after that by putting Y = VX and integrating we will get required general equation.
The given differential equation is dy _ Ix=3y-7
dx -3x+7y+3

Substituting x = X + h,y = Y + k, we obtain

dY _ (7X-3Y)+(7h-3k-7)
dX  (3X+7Y)+(3h+7k+3)

o (i)
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Choose h and k such that 7h—3k—-7=0and -3h + 7k + 3 = 0.

This gives h = 1 and k = 0. Under the above transformations, equation (i) can be written as

dy dv dY 7X-3Y
= hat — =V +X—, t—=
Let Y = VX so that X + X we ge X 3X27Y
dv _ -3V+7 v 7-7V? dX 7 2v 3
V+X—— = X=— = = 7T—=_. dv - dv
A T 7v=3 T ax T V-3 X 2viii ' T Vveo1

Integrating, we get

—TlogX = zIog(VZ—1)—§Iogu—IogC = C=V+1) V-1 = C=(y+x-10(y-x+1)
2 2 V+1
Which is the required solution.

7.7 Linear Differential Equation

A differential equation is linear if the dependent variable (y) and its derivative appear only in the first degree. The
general form of a linear differential equation of the first order is

& ipy-q .. (i)

dx

where P and Q are either constants or functions of x.
This type of differential equation can be solved when they are multiplied by a factor, which is called integrating
factor.

Multiplying both sides of (i) by elP e get el " [—31+PyJ = QelP*
X
On integrating both sides with respect to x, we get
yelpd" = erIde + ¢ which is the required solution, where c is the constant and ejpdx is called the integrating factor.

y
lllustration 29: Solve the following differential equation: g—y+l =&
X X X

. . . yd A | . L
Sol: We can write the given equation as e™ d_y+e_= —. By putting e” = t, we can reduce the equation in the
X X

X
form of j—; + Pt = Q hence by using integration factor we can solve the problem above.

y -y
We have, d_y+l=e_:> e')’d—y+e—=l (i)

dx x X dx x x

Put e¥ = t. so that d_y in equation (i), we get —£+i = N = ﬂ—lt = . .. (i)

X dx x x dx x X
This is a linear differential equation in t.

—=|d
Here, P = 1 and Q S R ej[ "] " grloox _gloact _ 1
X X X

dy _3x-6y+7 _3(x-2y)+7
dx X-2y+4 B X—-2y+4

-y
tlzjl(—lex+C = l=l+c = e—=l+C
X X X X X X X

The solution of (ii) is, t.(L.LF) =
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£ y(x
Illustration 30: The function y(x) satisfy the equation y(x) + 2x I]_yj )2 dx = 3x2 + 2x + 1. Prove that the substitution
0 X

0 +X2

equation for y(x)

X
z(x) = Ide converts the equation into a first order linear differential equation in z(x) and solve the original
1

X
Sol: By putting z'(x) = 1}’(—)2 we will get the linear differential equation in z form and then by applying integrating
+ X

factor we get the result.

d(x)

LetZ(x) = —= = Z() x (1 +x) + 2x(z(x)) = 33 + 2x + 1

1+x?
dz 2x 3x% +2x+1 .
—_ zZ = wee (I)
dx  1+x%° X2 +1

This is a first order linear differential equation in z.
2%

I—dx
CIE= el oeed Z14@ . Solution of (Vis 2(1F) = [(QxIF)dx+c
X +x2+X, 5 3 ¥
=z(1+x3) = j—(x +1)dx + C > z(1+x)=—+—+— +Candy=3x*+2x+ 1-2xz
x? +1 4 3 2

lllustration 31: Solve the differential equation ysin2x.dx — (1 + y* + cos2x)dy = 0

Sol: Similar to illustration 28, by putting —cos 2x = t, we can reduce the equation in the form of gt + Pt = Qhence
by using integration factor we can solve the problem given above. dx

We have, ysin2x.dx — (1 + y? + cos2x)dy = 0

dx cos2x _1+y?

= Sin2X.— — ()
y y
2
Putting —cos 2x = t so that 2sin2x gx = a in equation (i), we get E+Zt =2 ey’
dy dy dy y y
2
Here, P = 2 andQ = 21+y
y
[pd [2ay
IF.= e =eY =y*.  Thesolutionist(L.F) = [(QxLF)dy+C

4

2
= t.y2=2j'1+Ty.y2dy=2J'y+y3dy = tyr=y2+ y?+C

y2

Z_4cy™?
P Y

On putting the value of t, we get —.cos2x = 1 +

lllustration 32: Solve ylogy :—X +x—logy=0
y

Sol: By reducing the given equation in the form of %+ Px=Q we can solve this as similar to above illustrations.

y
dx dx X 1
We have, ylogy — +x-logy =0 = —+ ==
dy dy ylogy 'y
This is a linear differential equation in x.
1
——dy
HereP = ,Q= l,' IF. = er"’g" = gloaloay) = |ogy
ylogy y
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